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SUMMARY 
The Chebyshev matrix collocation method is applied to obtain the spatial modes of the Orr-Sommerfeld 
equation for Poiseuille flow and the Blasius boundary layer. The problem is linearized by the companion 
matrix technique. For semi-infinite domains a mapping transformation is used. The method can be easily 
adapted to problems with boundary conditions requiring different transformations. 
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1. INTRODUCTION 

The solution of non-linear eigenvalue problems can be obtained efficiently by shooting methods 
in which a good initial guess is vital for convergence. For problems in which a good initial guess is 
not available, the matrix method presents an attractive alternative. Bridges and Morris' 
developed a companion matrix method to linearize the spatial eigenvalue problem to study the 
stability of both channel and boundary layer flows. Their method incorporates the Chebyshev- 
tau method pioneered by Orszag' to discretize the governing Orr-Sommerfeld equation. Once 
the problem is linearized by this method, the entire spectrum can be obtained via the QZ or LZ 
algorithm. Recently, Khorrami et aL3 used the Chebyshev matrix collocation method to study the 
temporal and spatial stability of swirling flows in enclosed domains. The matrix collocation 
method is easier than the tau method to formulate, does not require major modifications for each 
new velocity profile, and the boundary conditions do not pose a problem. Khorrami et aL3 
employed the companion matrix method of Bridges and Morris;' however, they did not present 
the eigenvector distributions corresponding to the least damped eigenvalue. 

is combined with the companion 
matrix method to solve the non-linear spatial eigenvalue problem for channel and Blasius 
boundary layer flows. The semi-infinite domain of the Blasius. flow requires a mapping trans- 
formation and presents a challenging problem for the method under consideration. In addition to 
the least damped eigenvalues, we also present the corresponding eigenfunction distributions 
which were obtained without recourse to a local solver. 

In this work the Chebyshev matrix collocation 

2. SOLUTION PROCEDURE 

The present numerical procedure uses the Chebyshev-Gauss-Lobatto points for the normal ( y )  
direction discretization. For boundary layer calculations an exponential transformation5 is used 
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to map the domain from [0, a] to the half Chebyshev space [ 1,Ol. With this discretization the 
Orr-Sommerfeld equation can be written as 

(1) [(D’ -a’I)’ -iRe{(aUI-wI)(D’ - aI)-aU”I}]4 = 0, 

4 = 4 ’ = 0  a t y =  +1, 
4 = 4’ = 0 at y = 0, y + a. 

Here 4 is the eigenvector for the streamfunction, D represents the Chebyshev collocation matrix 
for the first derivative and I is the identity matrix. The elements of D are explicitly given by 
Canuto et aL4 and the higher-order derivatives are simply obtained as powers of D. In equation 
(l), a is the complex wave number, o is the real, radian frequency and ‘i’ is the imaginary number; 
U and U” represent the base flow velocity profile and its second derivative respectively. Re is the 
Reynolds number defined as Re = Uo6,/v for the boundary layer and Re = U,h/v  for channel 
flow. Here v is the kinematic viscosity of the fluid, h is the half channel height and 6 ,  is the 
displacement thickness. Velocity components are non-dimensionalized by the free stream velocity 
(U,) and the maximum channel velocity ( U , )  for the boundary layer and channel cases respect- 
ively. 

For spatially-evolving problems, equation (1) is non-linear in the eigenvalue a and can be 
written as a polynomial in a in the following explicit form: 

C4a4 + C , a 3  + C 2 a z  + C ,  a + C o  =O (2) 
with 

c4 = I, 
C ,  = iReU I, 

C ,  = -(ioReI+2D2), 
C ,  = iReU“I-iReUD2, 
C o  = D4 + iReoD’. 

(3) 

In the above set of equations, all the bold-faced letters represent ( N  + 1) x ( N  + 1) matrices; the 
last four rows of these matrices are modified for the boundary conditions. Here N is the number of 
intervals in the domain. The boundary conditions are independent of the wave number and 
therefore are imposed only in C,, and the corresponding rows of the remaining matrices are set to 
zero. This implementation creates a singular C ,  matrix resulting in infinite eigenvalues. In order 
to remedy the infinite eigenvalue problem and to increase solution accuracy by decreasing the 
number of arithmetic operations, the order of the matrices must be reduced. Since the zeros in the 

(N - 3) x (N - 3) 

0 0 0 0 .  . . .  o o x x x x  u 0 0 0 0  . . . .  o o o x x x  
0 0 0 0  . . . .  o o o o x x  

( N + 1 )  ~ 0 0 0 0 . .  . . o o o o o x J  

Figure 1. Structure of Co after simple column operations 
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last four rows of the matrices (except C,) are to be preserved, the order of reduction is done by 
simple column operations. This results in a 4 x 4 upper triangular submatrix in the last four rows 
of the C, matrix (Figure 1). If the boundary conditions are linearly independent, the order of the 
matrices is clearly reduced to (N - 3) x (N - 3) when four boundary conditions are eliminated. In 
these column operations, each column switching necessitates the switching of the corresponding 
rows of the calculated eigenvector. Therefore the original indices of the switched columns should 
be retained to decode the rows of the eigenvector matrix once it is calculated. 

Following Bridges and Morris' and recalling that the eigenvalues of the companion matrix are 
the roots of the corresponding polynomial equation, a companion matrix for equation (2) can be 
written as 

- c ,  -cz -c' -c,  c , o o o  

0 I 0 I 0 0 0 O i(. ; ; :)]I?]=.. li 0 0 I 0 

(4) 

0 0 0 1  

This equation represents a complex generalized eigenvalue problem and can be solved by the QZ 
algorithm. Note that the order of the above system is four times larger than the original reduced 
problem and the eigenfunctions can be directly obtained from the last quarter of the solution 
vector. The numerical calculations were performed on the VAX/VMS 8550 at the University of 
Colorado at Boulder and the CYBER 205 at NASA Langley Research Center. This was 
accomplished by the use of three IMSL subroutines, GVLCG, GVCCG and CXLZ. 

3. RESULTS, DISCUSSION AND CONCLUSIONS 

In this section a comparison of our results with those of Bridges and Morris' and Jordinson7 is 
presented for the stability of channel and Blasius boundary layer flows respectively. 

Channel flow stability 

Here we concentrate on a test case given in Bridges and Morris' with Re = 6000 and o = 0.26, 
which is linearly unstable for this flow. The first seven members of the eigenvalue spectrum are 
tabulated and compared with those of Bridges and Morris' in TableI. They employed the 
Chebyshev-tau expansion along with the matrix factorization technique using the Bernouilli 
iteration and solved the matrix eigenvalue problem with the QR algorithm. The present results 

Table I. Comparison of the eigenvalue spectrum for spatial stability of plane 
Poiseuille flow (Re = 6000, w = 0-26) 

Mode Bridges and Morris' Present method 

N + l = 4 1  
1 140047 - iOW086 1.00046 - i0.00086 
2 0.28323 + i0.02538 0.28323 + i0.02538 
3 0.30165 + i0.04886 0.30165 + i0.04886 
4 0.31976 + i0.07532 0.3 1976 + i0.07532 
5 0.33745 + iO.10492 0.33748 + i0.10485 
6 0.35456 + i 0  13782 035664 + i0.13489 
7 0.37090 + iO.17425 

N + l = 5 1  
1WO47 - i0.00086 
0.28323 + i0.02538 
0.30165 + i0.04886 
0.31976 + i0.07532 
0.33745 + i0.10492 
0.35456 + i0.13782 
0.37089 + iO.17426 
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indicate that increasing the order of the Chebyshev polynomials results in noticeable improve- 
ment in accuracy, but machine and truncation errors impose a limit for the order of the 
polynomials that can be used; e.g. on the VAX/VMS 8550, increasing the order above 100 
deteriorates the eigenvalue spectrum. This behaviour suggests that a trade-off exists between the 
order of the Chebyshev polynomials and the ability of the QZ algorithm to accurately solve large 
matrices. 

Blasius boundary layer stability 

Following Jordinson, we performed three calculations corresponding to subcritical 
(Re  = 336, w = 0.1297), slightly unstable (Re = 598, w = 0.1201) and unstable (Re = 998, 
o = 0.1 122) cases. The computed least damped eigenvalues are given in Table 11, and the eigen- 
function distributions shown in Figure 2 are in excellent agreement with those of J o r d i n ~ o n . ~  In 
Jordinson’s work, a transformation of Numerov type resulting in fourth-order finite differences 
was used and a second-order iterative technique was applied to find the eigenvalues. Because of 

Table 11. Comparison of the least damped eigenvalue for spatial stability of 
the Blasius boundary layer ((N + 1)-values are given in parentheses) 

Re w Jordinson ’ Present method 

336 0.1297 0.3084 + i0.0079 (81) 0.30864 + i0.00799 (46) 
598 0.1201 0.3079 -iO.0019 (81) 0.30801 -i0.00184 (51) 
998 0.1 122 0.3086 - i0.0057 (81) 0.30870- i0.00564 (51) 

1.0 

a 

0 

-0.6 
0 3 6 

Y 

Figure 2. Real (R) and imaginary (I) parts of the eigenfunctions for: (A) Re = 336, w = 0.1297; (B) Re = 598, w = 0.1201; 
(C) Re = 998, w = 0.1 122 (Blasius boundary layer). Imaginary parts are ten times their actual magnitudes 
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the uniform mesh he utilized, the computational domain did not extend to infinity but was 
truncated at 66 

The results presented in this paper demonstrate the applicability of the Chebyshev matrix 
collocation method to non-linear eigenvalue problems including semi-infini te domains using the 
companion matrix approach. The advantage of the matrix collocation method in comparison 
with the tau method is the flexibility to use different co-ordinate transformations and to impose 
different boundary conditions with relative ease. 
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